

# Energy Commission Staff Distributed Energy Resources Training Seminar

**Technologies** 

California Energy Commission, Sacramento
Jairam Gopal, Judy Grau,
Pramod Kulkarni and Ean O'Neill
April 13, 1999





# Distributed Energy Resources (DER) Training Seminar

- Welcome
- Introductions
- Morning Session
  - **№** Overview/History/Definitions
  - ➤ Distributed Energy Resources Technologies Characteristics and Applications







- Feb. 26 request from CPUC staff
- Purpose: Provide technical background to support CPUC Rulemaking 98-12-015
- Feb. 22, 1999 Assigned Commissioner's Ruling
  - **▲**Cost, current and projected status assumptions
- Let's keep this interactive and informal





### History

- First major conference sponsored by EPRI, NREL and PG&E in 1992
  - ➤ Benefits were hypothesized; few installations at that time
  - ➤ Emphasis was on utility perspective
- April 25-26, 1996: DG Roundtable sponsored by Energy Commission
  - ➤ Public/private partnership to analyze barriers and develop blueprint for action
  - **№** www.energy.ca.gov/CADER/documents/CADER\_exec\_summ.html







- CADER focuses on identifying barriers, developing recommendations, and implementing solutions
  - **№** Interconnection
  - **▲** Market Assessment and Technology Characterization
  - **▲** Communications
  - **▲** Regulatory and Legislative







### **Definitions**

- Distributed Generation (DG) -- CPUC
- Distributed Energy Resources (DER) --California Alliance for Distributed Energy
  Resources -- CADER
- Distributed Utility (DU) - Distributed
   Utility Associates





### **CPUC OIR Definition of DG**

- "Generation, storage, or DSM devices, measures and/or technologies that are connected to or injected into the distribution level of the T&D grid."
- Located at customer's premises on either side of meter
- Located at other points in distribution system, such as utility substation



# CADER Definition of Distributed Energy Resources (DER)

- Generates or stores electricity
- Located at or near a load center
- May be grid-connected or isolated
- Has a greater value than grid power:
  - Customer value
  - Distribution system benefits
  - Back-up or emergency power
  - Social or environmental value



### **Distributed Utility Definition**

A Distributed Utility incorporates energy-significant distributed generation, storage and feeder-specific DSM/CEE in its T&D system to augment central station plants and optimizes T&D asset utilization.

### Today's Central Utility

## Tomorrow's Distributed Utility?



# Operating The Distributed Utility





Utility System 5000 MW

#### **Distribution Planning Areas** 150 MW

**Distribution Substations 50 MW** 

> **Distribution Feeders 10 MW**



1/3 Industrial

1/3 Commercial 1/3 Residential

### The Distributed Utility Opportunity: Improved Asset Utilization

#### PG&E System Load and Percent of Feeder Maximum Load





# Characteristics and Applications of Distributed Energy Resources Technologies

Presented by:
Pramod Kulkarni
Energy Technologies Division







### **Overview**

- Define distributed energy resources (DER) technologies
- List potential DER technologies
- Present characteristics, attributes and impacts
- Understand DER role in deregulated market
- Discuss cost and deployment issues







- DG/DER facilitate competition and expand consumer choice
- Provide services in an unbundled electric service
- Technology characteristics have a bearing on one level and nature of competition on the distribution grid.
- Rulemaking deployment: easy for one technology and could be detrimental to another
- Rule benefiting one customer class may not be best for another using the same technology





### Issues Relevant for Rulemaking Affected by Technological Attributes

- Impact on the safety and grid reliability
- Reduced use of grid (non-recovered cost)
- Degree of back-up support required from the distribution grid
- Dispatchability
- Determine the benefits of distributed generation to the grid (value)
- Require advanced communications and metering for dispatch and control







- Fossil-fuel based distributed generation
- Non-fossil fuel based generation
- Storage technologies





# What Is Different About DER Technologies

- Some technologies are old and deployed differently
  - **▲** Internal-combustion engines
  - **▲**Gas turbines
  - ▶ Fuel cells
  - **▲** Batteries





# What is Different About DG/DER Technologies

- Recent technologies are tailored for DG/DER markets
  - **Small** wind systems ■
  - **S** Small fuel cells (proton exchange membrane)
  - ▶ Photovoltaic (PV shingles, AC modules)
  - **▲** Storage technologies (flywheels, SMES)
  - **▲** Micro-turbines





# Common Traits in DG/DER Technologies

- Mass produced
- Modular
- ◆ Small (<20 MW)
- Support system reliability
- Provide economic advantage to end-user, ESP, and/or UDC
- Provide customer and UDCs an alternative to standard generation options







Technologies installed by customers, energy service providers (ESP) or a utility distribution company (UDC) at or near a load for an economic advantage over the distribution grid-based option.





# CADER's Definition of Distributed Energy Resources

- Generates or stores electricity
- Located at or near a load center
- May be grid connected or isolated
- Greater value than grid power:
  - **№** Customer value
  - ➤ Distribution system benefits
  - **▲** Back-up or emergency power
  - ➤ Social or environmental value



# Economic Advantage From DG/DER Systems

- Economic advantages included one or more of the following:
  - **▲** Load management
  - **№** Reliability
  - ➤ Power quality
  - ➤ Fuel flexibility
  - **▲** Cogeneration
  - ➤ Deferred or reduced T&D investment or charge
  - ➤ Increased distribution grid reliability/stability





### Fossil Fuel Technologies

- ◆ Internal-combustion engines
  - **№** Diesel engines
  - **Natural** gas engines ■
- Micro-turbines
- Fuel cells
- Stirling engines







Photo courtesy of Caterpillar





Photo courtesy of Caterpillar





Diagram above courtesy of Capstone.

Photo on right courtesy of Bowman.





### Commercial Status of DG/DER

|                           | IC Engines                                 | Small<br>Turbines                             | Micro-<br>turbines                        | Fuel Cell                        |
|---------------------------|--------------------------------------------|-----------------------------------------------|-------------------------------------------|----------------------------------|
| Commercial Availability   | Well<br>established                        | Well<br>established                           | New<br>industry                           | Well<br>established              |
| Size                      | 50 kW-<br>5 MW                             | 1 MW –<br>50 MW                               | 25 kW –<br>75 kW                          | 1 kW –<br>200 kW                 |
| Installed<br>Cost (\$/kW) | \$800 –<br>\$1500                          | \$700 –<br>\$900                              | \$500 –<br>\$1300                         | \$3000                           |
| O&M Costs<br>(cents/kWh)  | 0.7 – 1.5                                  | 0.2 – 0.8                                     | 0.2 – 1.0                                 | 0.3 – 1.5                        |
| Fuel Type                 | Diesel,<br>propane,<br>NG, oil &<br>biogas | Propane,<br>NG,<br>distillate oil<br>& biogas | Propane,<br>NG,<br>distillate &<br>biogas | Hydrogen,<br>biogas &<br>propane |
| Typical Duty<br>Cycles    | Baseload                                   | Baseload,<br>intermed.<br>peaking             | Peaking<br>Intermed.<br>Baseload          | Baseload                         |





## Benefits of Fossil-Fuel Based Distributed Generation

- Dispatchable
- Can be used for baseload or peaking
- Reliable
- Used on either side of meter
- Fuel easily available
- First to be deployed





## Deployment Issues of Fossil-Fuel Based Distributed Generation

- Air and noise emissions (except fuel cell)
- Islanding
- Interconnection standards
- Reduced use of distribution system
- May need upgrading of fuel supply system (e.g gas pressure)







- Photovoltaics
- Solar-dish Stirling
- Small wind systems
- Large wind systems
- Stirling engines (biomass, LFG)







Photo courtesy of Edison Technology Solutions





Photo courtesy of Edison Technology Solutions





Photo courtesy of Edison Technology Solutions





#### **Small Wind Turbines are Different**

#### Large Turbines (300-750 kW)

- Installed in "Windfarm" Arrays
   Totaling 1 100 MW
- \$1,000/kW; Designed for Low Cost of Energy
- Requires 6 m/s (13 mph) Average Sites

#### Small Turbines (0.3-50 kW)

- Installed in "Rural Residential" On-Grid and Off-Grid Applications
- \$2,500-5,000/kW; Designed for Reliability / Low Maintenance
- Requires 4 m/s (9 mph) Average Sites





#### **Modern Small Wind Turbines:**

#### High Tech, High Reliability, Low Maintenance

- Aerospace Technology
- High Reliability Low Maintenance
- Easily Retrofits to Homes & Businesses
- Typical Costs: \$3 / Watt (AC, Installed)
- O&M Costs ~ \$0.005/kWh
- American Companies Lead in Technology and Market Share
- Further Advances Coming DOE Advanced Small Wind Turbine Program: 4 Projects, 8 - 40 kW

10 kW Bergey Turbine







# Commercial Status of DG/DER

|                           | Photovoltaic          | Dish-<br>Stirling                            | Small<br>Wind        | Large<br>Wind       |
|---------------------------|-----------------------|----------------------------------------------|----------------------|---------------------|
| Commercial Availability   | Well<br>established   | Year<br>2000?                                | Well<br>established  | Well<br>established |
| Size                      | 0.30 kW –<br>2 MW     | 30 kW and larger                             | 600 watts –<br>40 kW | 40 kW –<br>1.5 MW   |
| Installed<br>Cost (\$/kW) | \$6,000 –<br>\$10,000 | \$10,000/<br>kW (now)<br>\$400/kW<br>(later) |                      | \$900 –<br>\$1,100  |
| O&M Costs<br>(cents/kWh)  | Minimal               | ,                                            | Varies               | 1.0                 |
| Fuel Type                 | Solar                 | Solar and<br>NG (hybrid<br>mode)             | Wind                 | Wind                |
| Typical<br>Duty Cycles    | Peaking               | Peaking or<br>Interm.<br>Hybrid mode         | Varies               | Varies              |







- ◆ No/low noise or air pollution
- Independent of fossil fuel price changes
- Good for very small, modular applications
- Could be used on either side of a meter
- Coincident with peak demand when solar resource is used





# Deployment Issues of Renewable Based Distributed Generation

- Intermittent availability (unless used with storage)
- Islanding
- ◆ Less than 2 MW (100 kW or Less)
- Interconnection standards and cost
- Will need grid support
- New industry, lacks public exposure







- Batteries
- Modular pumped hydro
- Superconducting magnetic energy storage (SMES)
- Flywheels
- Ultracapacitors







Photo courtesy of Trinity Flywheel, Inc.

DG Seminar on R..98-12-015 / 99-DIST-GEN(1) / Sacramento, CA / April 13, 1999



### **Cryostat Assembly**





### Superconducting Magnet Provides Compact Energy Storage



Photos courtesy of American Superconductor



# PQ AC Installed at Fairbluff, NC



Photo courtesy of American Superconductor



#### Storage Provides Solutions to Power Quality Problems

|                                   | Transients | Voltage<br>Disturbance | Interrup-<br>tion | Harmonic<br>Distortion | Voltage<br>Flicker |
|-----------------------------------|------------|------------------------|-------------------|------------------------|--------------------|
| Energy<br>Storage                 | Х          | X                      | Χ                 | Х                      | Х                  |
| Surge<br>Arrestor                 | Х          |                        |                   | Х                      |                    |
| Filter                            | Х          |                        |                   | X                      |                    |
| Isolation<br>Transformer          | X          |                        |                   |                        |                    |
| Constant<br>Voltage<br>Transfomer |            | X                      |                   |                        |                    |
| Dynamic<br>Voltage<br>Restorer    |            | X                      |                   |                        |                    |
| Back-up<br>Generator              |            |                        | Х                 |                        |                    |





- Multiple Uses:
  - **▲**Load management
  - **№** Power quality
  - **►** Dispatchability
  - **►** Uninterrupted power supply
  - **№** Reliability/Availability
  - **▶** Dynamic benefits for the grid





# Storage As a Distributed Energy Resource

- Storage type and size varies
- Determining factors include:
  - **№** Purpose of use
  - **▶** Duration of use
  - **▲** Comparative cost







- Provide auxiliary services on either side of the meter
- Used by UDC, ESP, ESCo and end-user
- Wide range of size and storage duration
- Costs will come down faster as core technologies are used for transportation
- Batteries and SMES available now







- Empower customers by providing a choice
- Provide missing or expensive components of an unbundled electrical service
- Allow feed-back of electricity to grid
- Create safety concerns, real or perceived, for UDC
- Provide dynamic benefits to the distribution system
- Positive or adverse impact on the T&D System





## Most Likely Users of DG in Next Five Years

|                  | IC<br>Engines | Small and micro turbines | Storage | Fuel<br>Cell | PV | Small<br>Wind | Large<br>wind |
|------------------|---------------|--------------------------|---------|--------------|----|---------------|---------------|
| Indust.          | Х             | X                        | X       | Х            |    |               |               |
| Comm.            | X             | X                        | Х       | X            | X  | X             |               |
| Resi-<br>dential |               |                          |         | Х            | X  | X             |               |
| UDC              |               | X                        | X       | X            | X  |               | X             |







| Summary                | $'$ of $^{-}$    | Tech              | nica    | l At          | tribi | ıtes              |
|------------------------|------------------|-------------------|---------|---------------|-------|-------------------|
| Carrinary              | Engine<br>Genset | Turbine<br>Genset | Battery | Fuel<br>Cells | PV    | Dish-<br>Stirling |
| Conventional Interface | •                | •                 |         |               |       | •                 |
| Electronic Interface   |                  |                   | •       | •             | •     |                   |
| Dispatch ability       | •                | •                 | • 1     | •             |       | • <sup>2</sup>    |
| Load Following         | •                | •                 | •       | •             |       |                   |
| Intermittency          |                  |                   |         |               | •     | •                 |
| Peaking Generation     | •                | •                 | •       | •             | •     | •                 |
| Base Load              |                  |                   |         | •             |       |                   |
| Interme diate Duty     |                  | •                 |         | •             |       | • 2               |

#### Note:

- 1. When charged.
- 2. With supplement heat from natural gas burner.

(Source: NREL)

32





# Auxiliary Technologies Essential for Integration of DER to the Grid

- Power electronics and power conditioners
  - **№** Improve power quality
  - **Safety S**afety
- Control, metering and communications
  - **►** Dispatch
  - **№** Billing
  - **S**afety ■
- Planning and valuation tools
  - ▶ Value to grid
  - **▲** Capacity needs assessment



### Technology Mix Affects Grid Impacts

- Source of capacity on the grid affects safety, backup and cost
  - ➤ 5 MW diesel-generation capacity delivers more kWh and is dispatchable compared to 5 MW of PV
  - **№** 5MW diesel adds more pollution than 5 MW fuel cells
  - ➤ 5MW of a natural gas engine provides baseload power with little or no backup, but 5 MW of wind requires backup







- Better understand impact of DG/DER systems on the grid through site monitoring
- Demonstrate new DG/DER systems
- Valuation of DG/DER for system reliability and support

